• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar
  • Skip to footer

Power Inception

Resources for All Things Power Related

  • Home
  • Tech News
  • Product Reviews
  • Refrigerators
  • DC Circuits
  • Networking
  • Physics
  • Apps
  • Business

Electrical Shunt

02/10/2017 By PowerInception.com

Galvanometer is very sensitive device. Flow of huge amount current can burn galvanometer or displaces spring of it. For saving galvanometer a small value parallel resistor is connected across it and makes another way out of flowing current. Parallelly connected resistor is called shunt. Total current divides into two ways. Maximum current flows through shunt resistor due to low resistance and small amount of current flow. In this way shunt saves galvanometer from damage.

Parallel connection of small value resistor across galvanometer which saves galvanometer from damage of huge current flow is called shunt.

Relation between galvanometer current and shunt current with total current

shunt of galvanometerFigure: Galvanometer Shunt

Suppose Galvanometer resistance G. A shunt resistor S is connected parallelly with galvanometer at A and B points. Total current I comes across A point and divides into two paths Ig through galvanometer and Is current shunt resistor.

Total current, I = Ig + Is

Potential of A and B point are VA & VB.

According to Ohm’s law for galvanometer, VA – VB = IgG

For shunt, VA – VB = IsS

From two above equation, IsS = IgG

Or Is / Ig = G/S

Adding by 1 both sides we get,

current of galvanometer

If we multiply galvanometer current with (G+S)/S then we get total current. So (G+S)/S is called shunt factor.

If a shunt is connected across galvanometer parallelly and the factor multiplication with galvanometer current results to total current is called shunt factor.

Ammeter range extension

Ammeter Shunt

The device which measures the current flow in ampere unit is known as ammeter.

The resistance of ammeter is very low. For measuring of current ammeter is connected in series. An ammeter range is the capability of it current measurement. A low current measuring ammeter can be upgrading into high current measurement ammeter. That means a low range ammeter can be converted into high range ammeter. For that a low resistance is connected as shunt across ammeter parallelly. Low resistance is used cause maximum current passes through the shunt resistance. In this way n times excess current can be measured using shunt resistance.

Suppose internal resistance of ammeter is r, it can carry maximum I current. For measuring nI current from ammeter S resistor is connected parallelly.

ammeter shunt

Figure: Ammeter Shunt

current of shunt

 

 

 

 

 

 

Here G = r

I = nI

Or nS = r + S

Or (n-1) S = r

resistance of ammeter shunt

 

 

 

For measuring n times extra current r/ (n-1) resistance can be connected in parallel.

Example: Internal resistance of an ammeter 1.8Ω. It can measure 1A current. For measuring 10A current how a shunt should be connected?

Answer:

Given,

Internal resistance of ammeter, r = 1.8Ω

n = I′/I=10/1 = 10

We know,

calculation of ammeter shunt

 

 

 

0.2Ω shunt resistance should be connected in parrallelly across ammeter.

Voltmeter range extension

Voltmeter Shunt

The device which can measure the voltage of two points in any circuit in volt unit called voltmeter.

For measurement of voltage of any two points voltmeter should be connected in parallel with it. Normally internal resistance of a voltmeter is greater than ammeter internal resistance.

The capability of measuring maximum voltage for a voltmeter is called range of the voltmeter. A low range voltmeter can be extended up to high range voltmeter easily. In other words a low voltage range measuring voltmeter can be capable of measurement high range voltage. The capacity measurement voltage of any voltmeter can be extended n times more as its normal range.

To do so a high value resistance should be connected in series with voltmeter which is called multiplier.

voltmeter shuntFigure: Voltmeter Shunt

Let,

Internal resistance of a voltmeter r,

It can take Ig current through it

and it can measure maximum V voltage.

 

 

 

 

For measuring nV amount of voltage R quantity resistance should be connected in series with the voltmeter.

voltmeter range extension

 

 

 

 

 

 

 

 

So, R = (n-1) × voltmeter internal resistance

From this equation it is clear for measuring n times voltage (n-1) time value of internal resistance of voltmeter should be connected in series across it.

Example: A voltmeter can measure maximum 15V and it’s internal resistance 1000Ω. For measuring 150V from the voltmeter what step should be taken?

Answer:

Here,

Internal resistance of voltmeter, r = 1000Ω

Maximum capacity of voltage measurement of voltmeter, V = 15V

Expected capacity of voltage measurement of voltmeter, V′ = 150V

Essential resistance connection in series, R = ?

But n = V′/V = 150/15 = 10

We know,

R = (n-1) × r

= (10 – 1) × 1000

R = 9000Ω

For measuring 150V voltage 9000Ω should be connected in series with voltmeter.

Filed Under: Physics Tagged With: Shunt

Primary Sidebar

best ohm meter review

14 Best Ohm Meter To Buy Review And Buyer’s Guide

Which one is the best ohm meter? We tested some famous brands ohm meter on our lab spending 72 hours and took final decision analyzing the function, performance, durability and made short list of 14 best digital ohm meter on the market. Which brand is the best for ohm meter? We got Fluke, AEMC, SUPCO, […]

The Complete Guide to Purchasing Two-Way Radios for Businesses

5 Key Benefits of a GPS Asset Tracker

Document Security Mistakes

4 Common Document Security Mistakes to Avoid for Your Business

Well Drilling Contractor

5 Tips for Hiring a Well Drilling Contractor

Emerging Trends in Business

How to Keep up With Emerging Trends in Business

3D Printing Services

How to Pick 3D Printing Services: The Complete Guide for Businesses

Product Reviews for Small Businesses

6 Tips on Managing Product Reviews for Small Businesses

Buy Chemicals Online

Can You Buy Chemicals Online? Legality and Considerations

Best ups for gaming computer

10 Best UPS For Gaming PC For Ultimate Backup Power

best Power Probe 3 Master Kit

Best Power Probe Master Kit Reviews And Buying Guide

Best Circuit Breaker Panels

Proven 10 Best Circuit Breaker Panel For Ultimate Protection

Footer

About us

PowerInception.com provides thorough tech reviews and the latest technology news. I participate in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com. As an Amazon Associate I earn from qualifying purchases.

Privacy policy

Affiliate Disclosure

Contact us

Popular posts

3D Printing Services

How to Pick 3D Printing Services: The Complete Guide for Businesses

Product Reviews for Small Businesses

6 Tips on Managing Product Reviews for Small Businesses

Buy Chemicals Online

Can You Buy Chemicals Online? Legality and Considerations

Best ups for gaming computer

10 Best UPS For Gaming PC For Ultimate Backup Power

best Power Probe 3 Master Kit

Best Power Probe Master Kit Reviews And Buying Guide

Categories

  • AC Circuits (1)
  • Apps (16)
  • Battery (4)
  • Business (77)
  • DC Circuits (19)
  • Digital electronics (13)
  • Economics (2)
  • Electrical & Electronics (20)
  • Featured (15)
  • Financial Tech (6)
  • Generator (7)
  • Networking (16)
  • Payroll and HR (4)
  • Physics (30)
  • Product Review (30)
  • Programming C (2)
  • Refrigerators (4)
  • Renewable Energy Technology (3)
  • Software (25)
  • Tech News and Reviews (84)
  • Transformers (6)
  • Websites and Internet (19)

Copyright © 2023 Power Inception